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In this study, we revisit two simplified models of hovering motion for fruit fly and
dragonfly from the perspective of force decomposition. The unsteady aerodynamics
are analysed by examining the lift force and its four constituent components, each of
which is directly related to a physical effect. These force components include one from
the vorticity within the flow, one from the surface vorticity and two contributions
credited to the motion of the insect wing. According to the phase difference in the
models, a hovering motion can be classified into one of three types: symmetric,
advanced and delayed rotations. The relative importance of the force components
under various flow conditions are carefully analysed. It is shown that the symmetric
rotation has the maximum vorticity lift (from volume and surface vorticity), but
the optimal average lift is attained for an advanced rotation, which, compared to
the symmetric rotation, increases the force contribution due to the unsteady surface
motion at the expense of sacrificing contribution from the vorticity. By identifying
the variations of the vorticity lift with flow characteristics, we may further explore the
detailed mechanisms associated with the unsteady aerodynamics at different phases of
hovering motion. For the different types of rotation, the insect wing shares the same
mechanism of gaining lift when in the phase of driving with a fuller speed but exhibits
different mechanisms at turning from one phase of motion to another. Moreover, we
also examine the effects of the Reynolds number in an appropriate range and evaluate
the performance of different wing profiles from symmetric to largely cambered.

1. Introduction
Insect flight has been of great interest to general audience, not only to scientists

and biologists. For example, consider the hovering motion. Ellington (1984) showed
that the classical lifting line theory quasi-steady assumption failed in explaining how
an insect supports itself and considered that the lift supporting the insect comes from
the unsteadiness. In view of advances of numerical and measurement techniques in
late years, various studies of unsteady aerodynamics that have helped comprehend
lift generation of insect flight have been concluded.

Weis-Fogh (1973) proposed the clap-and-fling mechanism by observing the wasp
Encarsia formosa, and Lighthill (1973) presented a detailed theory for the mechanism.
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The leading-edge vortex (LEV) produced on the model of fling what is termed delayed
stall, which Maxworthy (1979) credited to be an important source of the lift. Ellington
et al. (1996) observed the hawkmoth Manduca sexta and found the LEV attached on
the wings could be important for insect flight. It was also confirmed by Dickinson
& Götz (1993) and Dickinson (1994). Dickinson, Lehmann & Sane (1999) measured
the aerodynamic forces from the dynamically scaled model of the fruit fly wing and
concluded that the generation of enhanced lift of insects comes from the delayed stall
during the translation of the stroke, rotational circulation and wake capture at the
beginning and near the end of the stoke. It was also shown that the kinematics of
flapping wing have an effect on the forces of the LEV (Wang 2000b; Sane & Dickinson
2001, 2002). Srygley & Thomas (2002) trained butterflies to fly freely and captured the
images of the air flow around their wings. They concluded that butterflies use a variety
of unconventional aerodynamic mechanisms to generate force. In addition, other
factors, such as geometric cross-section, kinematic models and Reynolds number,
have effects on the applied forces and unsteady flow phenomena of insect flight by
experiments and numerical computations. Smith, Wilkin & Williams (1996) showed
the advantages of an unsteady panel method in modelling the aerodynamic forces on
rigid flapping wings. Wang (2000a) studied the two-dimensional vortex dynamics for
insect hovering and examined the effects of the Reynolds number on the averaged
lift. Sun & Tang (2002) compared the experimental results of Dickinson et al. (1999)
with their numerical calculations and suggested that the force peaks that occur at
the beginning of the half-stroke were due to the rapid acceleration of the wing.
Ramamurti & Sandberg (2002) performed a three-dimensional computational study
of the aerodynamics of insect flight with particular emphasis on the effect of phasing
between the translational and rotational motions. Isogai et al. (2004) simulated three-
dimensional unsteady viscous flow of dragonfly hovering and were mainly concerned
with the total lift force and specified necessary power for the motion. Bos et al. (2008)
compared four two-dimensional models for fruit flies, all scaled at the Reynolds
number Re = 110, and showed significant difference in forces from the simplified wing
kinematic models.

Although two-dimensional flow patterns are less realistic for insect flight, they
still enable us to identify some essential features based on the following reasons:
Two-dimensional geometry is simple and gives good approximation for the wing with
high aspect ratio. Wang, Birch & Dickinson (2004) concluded that two-dimensional
unsteady forces turn out to approximate well three-dimensional experiment for insect
flight. In addition, it might be sufficient to explain high-lift mechanisms of the
hovering motion. In spite of these important works, there still exit puzzling and
unsatisfactory explanations about the high-lift mechanisms of the hovering motion
even for two-dimensional flow. In particular, Sane (2003) showed that the cause of this
discrepancy between the numerical simulations (Sun & Tang 2002) and the particle
image velocimetric observations (Dickinson et al. 1999) remains unclear. Wang (2005)
remarked that both the acceleration and wing–wake interaction must have an effect
on the forces. However, these effects have eluded simple quantitative prediction, thus
making it difficult to estimate their relative strengths. Lehmann (2008) mentioned that
apart from this controversial view on the wake capture mechanism, it remains unclear
how exactly the benefit of wake capture changes during fast forward or manoeuvring
flight of an insect when the wings experience additional fluid components produced
by the animal’s own body motion. It has been clear that the high lift of hovering
flight cannot be explained by steady aerodynamics but comes from the unsteadiness
of the motion. But the term unsteadiness is unclear because it may refer to the wing
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with unsteady rotation and acceleration and the unsteady contributions from within
the flow region or on the body surface.

In the literature, there are several useful force theories which shed light on different
aspects of hydrodynamic or aerodynamic forces. The circulation theory was the
earliest used to predict the lift (see, e.g., Howarth 1935). Weis-Fogh (1973) predicted
the lift coefficient of dragonfly hovering based on the blade element theory. Rayner
(1979) and Ellington (1984) employed the flow momentum balance in the study
of helicopters to determine the force in flapping flight. Wu (1981) provided some
relationships between forces and the rate of change of vorticity moments in the
viscous flow. Lighthill (1979, 1986) developed the ideas which validate a separation of
hydrodynamic loadings into potential flow forces and vortex flow forces. The applied
force was deliberately explained as the rate of change of a momentum, defined by an
absolutely convergent integral. In general, experimental works report measured forces
on a wing by force sensor, and numerical computed results give forces by integrating
the stress over the wing surface. It is now unsteadiness that has been recognized as the
cause of the lift of an insect in hovering motion. But it is difficult to solely identify the
vortex wake with the generation of high lift, as there are other unsteady contributions
to the lift in the hovering motion. As a matter of fact, the term ‘unsteadiness’ includes
the time-varying motion of the wing and time-varying flow within the fluid as well as
the time-varying surface vorticity on the wing surface.

Some time ago, Chang (1992) proposed a diagnostic force theory for real viscous
flow to separate potential forces such as added mass and inertial forces and to
distinguish the contributions of individual fluid elements to aerodynamic forces. The
theory starts from the D’Alembert theorem that the incompressible potential flow
predicts no force will be exerted on a body if the incident flow is a constant uniform
stream. It is noteworthy that incompressible potential flow means that there is no
single fluid element possessing non-zero vorticity or dilation. It is therefore considered
that in a more realistic flow, any fluid element with non-zero vorticity or dilation may
be considered a source of the hydrodynamic force. Based on this observation, Chang
(1992) proposed to decompose the force in any given direction into three components:
(i) the potential force due to the body motion or the accelerating incident stream;
(ii) the force due to vorticity strictly within the flow region; (iii) the force due to the
surface vorticity, which can further be divided to two parts – one is the frictional force,
and the other is called the friction-like force. Each of (ii) and (iii) is written in the form
of an integral in which the integrands are appropriately called the volume and surface
force elements, respectively. It is notable that the volume element rapidly decays away
from the body and accounts for most force contribution for largely separated flow.
The viewpoint has found some applications (e.g., Chu et al. 1996), and was extended
to compressible flow to examine force contributions by various structures in the flow
(Chang & Lei 1996a, b). More directly related to the present interest are the works
of Howe (1989, 1995) in which the author presented the force decomposition with
great clarity and applied it to bubbles, droplets and bodies at low and high Reynolds
numbers. The method of analysis was also later applied to analyse lift and drag
fluctuations of a sphere (Howe, Lauchle & Wang 2001). In a recent paper, Biesheuvel
& Hagmeijer (2006) presented the early idea by Burgers (1920) in terms of the vorticity
distribution and pointed at the close relationship of Burgers’s formula with those of
Lighthill (1979, 1986). The authors went further to establish the connection between
these earlier formulas and the more recent work on aerodynamic forces by Kambe
(1986) and Howe (1989, 1995). The force decomposition was recently extended
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to flow about many bodies with applications to bubble dynamics (Ragazzo &
Tabak 2007) and for force diagnosis (Chang, Yang & Chu 2008).

In the present study, the viewpoint with force decomposition is used to examine
the hovering flights of the fruit fly and dragonfly in their respective simplified
two-dimensional models (Dickinson et al. 1999; Wang 2000a; Wang et al. 2004)
and illustrate how the theory of force decomposition sheds further light on several
contributions from unsteadiness to the lift generated at various stages of hovering
flight and their dependence on the type of motion, wing profile and Reynolds number
as well as the location of the axis of rotation.

2. Auxiliary potential
In order to analyse various force contributions to the flow about a finite body, we

need to introduce auxiliary potential functions. Let us first determine the nature of
potential solution. The potential solution φ satisfies ∇2φ = 0 and is required to vanish
at infinity at which the fluid is at rest. The general solution at great distances r from
the body in two dimensions is given by

φ = −(A · ∇) log r + · · · = − A · r̂
r

+ · · · , (2.1)

where r̂ is the unit vector along the direction of r . In (2.1), the vector A depends on
the actual shape and the motion of the wing and is independent of the coordinates.
The exact A requires a complete solution of the equation ∇2φ = 0 (cf. Landau &
Lifshitz 1987) and appropriate boundary conditions. It should be kept in mind that
the corresponding velocity ∇φ decays like 1/r2 in two dimensions. A similar formula
holds in three dimensions. The boundary conditions will be specified depending on
which force direction is considered. If s is the unit vector along the force direction of
interest, then we require n · ∇φ = −n · s on the body surface. The potential function
that satisfies this condition is used to decompose the pressure force along the s
direction for real viscous fluid to added-mass force, surface vorticity force and volume
vorticity force as well as other possible contributions.

3. The force decomposition
Consider a single insect wing motion in air as shown in figure 1. Let ρ∗ be the

air density, μ∗ the air viscosity, c∗ the chord length of wing and U ∗
max the maximum

velocity. Take c∗/2 to be the reference length, c∗/2U ∗
max to be the reference time

and 1/2ρ∗c∗U ∗2
max to be the reference pressure. The flow field of the hovering motion

is assumed to be governed by the Navier–Stokes equations and incompressibility
condition which, in dimensionless form are given by

∂ v

∂t
+ (v · ∇)v = −∇p +

2

Re
Δv; (3.1)

∇ · v = 0. (3.2)

where p is the pressure; v is the velocity; and Re = ρ∗c∗U ∗
max/μ

∗ is the Reynolds
number. The most well-known formula for calculating the lift is

CL =

∫
S

pn · j dA +
2

Re

∫
S

n × ω · j dA, (3.3)

where j is the unit vector in the lift direction; n is the inward normal to the wing
surface; and ω denotes the vorticity. Now we show how to gain the formula of force
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Figure 1. Schematic of the wing: c is the chord length; S is the wing surface; and VR is the
volume enclosed by the wing surface S and a large surface SR of radius R. All the quantities
are dimensionless.

decomposition. First of all, we are concerned with the lift direction. Let φ satisfy the
boundary condition n · ∇φ = −n · j (i.e. s = j ), which is the unit velocity on the body.
Let VR be the volume of fluid enclosed by a cylindrical surface SR of large radius R

and the wing surface S. Equation (3.1) can be written

−∇p =
∂ v

∂t
+

1

2
∇ |v|2 − v × ω +

2

Re
∇ × ω. (3.4)

Here we will use the two identities v · ∇φ = ∇ · (vφ) and (∇ × ω) · ∇φ = ∇ · (ω × ∇φ)
and apply the divergence theorem. Taking inner products with ∇φ on both sides of
(3.4) and integrating within the flow region VR yields

−
∫

S∪SR

pn · ∇φ dA =

∫
S∪SR

φ
∂v

∂t
· n dA +

1

2

∫
S∪SR

|v|2 ∇φ · n dA

−
∫

VR

v × ω · ∇φ dV +
2

Re

∫
S∪SR

n × ω · ∇φ dA. (3.5)

The fluid is at rest in the far field from the body. Applying this boundary condition
and noting that ∇φ decays like 1/r2, we can carry out the integral on the left-hand
side and the first, second and fourth ones on the right-hand side with R → ∞ and
VR → V (entire fluid region) to obtain

−
∫

S

pn · ∇φ dA =

∫
S

φ
∂v

∂t
· n dA +

1

2

∫
S

|v|2 ∇φ · n dA

−
∫

V

v × ω · ∇φ dV +
2

Re

∫
S

n × ω · ∇φ dA. (3.6)

Recall the boundary condition n · ∇φ = −n · j on the body surface for the left-
hand side; this gives −

∫
S
pn · ∇φ dA=

∫
S
pn · j dA. Finally if the frictional force

(2/Re)
∫

S
n × ω · j dA (i.e. the second term on the right-hand side of (3.3)) is included,

the complete decomposition for the lift force can be obtained:

CL = CLa + CLm + CLv + CLs, (3.7)
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where

CLa =

∫
S

φ
∂v

∂t
· n dA; CLm =

1

2

∫
S

|v|2 ∇φ · n dA;

CLv = −
∫

V

v × ω · ∇φ dV ; CLs =
2

Re

∫
S

n × ω · (∇φ + j ) dA.

⎫⎪⎪⎬
⎪⎪⎭

(3.8)

In (3.8), CLa is the contribution associated with the acceleration of the wing;
CLm corresponds to the contribution by the velocity of the wing; CLs denotes
the contribution by the surface vorticity and friction on the wing surface; and
CLv represents the contribution of pressure force due to vorticity within the flow
field. In particular, the integrand −v × ω · ∇φ is called the volume lift element, and
(2/Re)n × ω · (∇φ + j ) is called the surface lift element, where the part with ∇φ is
called the friction-like force. Either of them may be termed the vortex force elements.
A salient feature is only the volume lift elements near the body contribute significantly
to the lift force because ∇φ is rapidly decaying away from the body. Also the potential
function φ can be considered the geometric factor, for each flow condition can be
associated with a unique φ. It is noted that among the force components, CLa and
CLm are determined by the boundary conditions and the geometric profile, while the
determination of CLv and CLs requires solution of the fluid flow.

Note that if we consider the force in drag direction, say s = i , then φ has to satisfy
n · ∇φ = −n · i on the wing surface. The force along the i direction is decomposed by

CD = CDa + CDm + CDv + CDs. (3.9)

Here, the numerical results are obtained by using the deterministic vortex method
(Chang & Chern 1991) and the SimpleC method of the commercial code FLUENT
based on the control-volume method. Moreover, a conformal hybrid grid is used in
the numerical method. In each time interval, the grid deformation is adjusted by the
path of the wing to achieve numerical stability, according to the method of spring
analogy and remeshing, and governed by the geometric conservation law (GCL; see,
e.g., Thomas & Lombard 1979). In the present study, the total lift coefficient CL is
obtained by summing up all the lift components CLm, CLa , CLv and CLs . To ensure
its accuracy, CL will also be computed according to (3.3), and the computed result is
denoted by CL(p).

4. Results and discussion
In this section, we are concerned with the simplified models for fruit fly and

dragonfly, respectively. The two models basically exhibit different mechanisms in
generating unsteady lifts but also share some common features as we vary the phase
difference in the models. It is also interesting to study the effects of the Reynolds
number in an appropriate range for insect flight and evaluate the performance of
different wing profiles on the total lift and the contributing components.

4.1. Model for fruit fly motion

The motion for fruit fly is performed with A∗
0/c

∗ = 4.8 and f ∗ =0.25 Hz. The Reynolds
number Re is 115. The motion of the elliptic wing with aspect ratio 8 is given by
A(t) = A0/2[cos(2πf t) − 1]. The rotation is about the middle chord of the wing, and
the angle of attack is α(t) = π/2+π/4[sin(2πf t + δ)] with f = 1/T = c∗f ∗/2U ∗

max . The
rotation is set to be the advance if (δ > 0), symmetric if (δ = 0) and delayed if (δ < 0).
In this study we consider seven values of δ, which include δ = −π/4, −3π/8, −π/2
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δ α(0) C̄L(p) C̄L C̄Lm C̄La C̄Lv C̄Ls

π/2 135◦ 0.275 0.274 −0.001 0.182 −0.0001 0.093
3π/8 131.57◦ 0.589 0.589 −0.001 0.169 0.252 0.169
π/4 121.82◦ 0.723 0.724 0.001 0.130 0.372 0.221
0 90◦ 0.543 0.547 0.002 0 0.361 0.184

−π/4 58.18◦ 0.260 0.263 0.002 −0.130 0.297 0.094
−3π/8 48.43◦ 0.109 0.112 0.001 −0.169 0.229 0.051
−π/2 45◦ −0.271 −0.271 0.001 −0.182 0.003 −0.093

Table 1. Various time-averaged lift coefficients versus phase difference δ for fruit fly hovering.

(delayed); δ = 0 (symmetric); δ = π/4, 3π/8, π/2 (advanced). The simulated motion is
started from rest, and the lift reaches a stationary state after three strokes. Here we
chose the sixth period for investigation.

4.1.1. Influence of the phase difference between translation and rotation

Table 1 presents a synoptic view of the distinctions of the three types of rotation
by summarizing the lift components averaged over a time period. In this table, we
have the maximum total lift C̄L at δ = π/4. In other words, the phase difference δ

cannot be negative or significantly larger than δ = π/4, as high lift is concerned. In all
the motions, C̄Lm is negligible compared to other components. Indeed, C̄La increases
with monotonously increasing phase angle δ from C̄La = −0.182 for δ = −π/2 to
C̄La = 0.182 for δ = π/2. However, C̄Lv and C̄Ls favour the largest value at δ = π/4.
In the following discussion, we only consider the details for three values of δ, − π/4,
0 and π/4. The symmetric rotation is supported in full by the vortex lift (C̄Lv+C̄Ls),
as C̄La is zero and C̄Lm is negligible. By switching from the symmetric rotation to
the advanced, the most significant gain is the C̄La coefficient (from 0 to 0.13), though
there is also 8.81 % gain in the vortex lift (from 0.545 to 0.593). The increase in C̄Ls

(from 0.184 to 0.221) is 20.11 %, while the increase in C̄Lv (from 0.361 to 0.373) is
only 3.04 %. Nevertheless, the relative importance of the vortex lift for the advanced
rotation which is 81.9 % ((C̄Lv+C̄Ls)/C̄L × 100 %) is still very significant. Compared
to the symmetric rotation, the delayed rotation has a negative C̄La(−0.130) and loses
significantly the vortex lift by 28.3 % (from 0.545 to 0.391). It is also of interest to
note that the surface vorticity is an important component of the vortex lift at these
relatively low Reynolds number flows. If we consider the ratio C̄Ls/(C̄Lv+C̄Ls), it is
37.3 % for the advanced rotation and 33.8 % for the symmetric and drops to 24.0 %
for the delayed.

In order to examine the unsteadiness, figures 2–4 show the time histories of the
total lift CL as well as the four lift components CLa , CLm, CLv and CLs for the three
types of hovering flight in a period of motion. In all the types of motion, the insect
wing is at its rightmost position in the beginning of the period. It is sufficient to study
the behaviours of all the lift coefficients in a half period of time, say from t/T = 0.25
to t/T =0.75. First, we note that CLm is uniformly small in all the three types of
hovering flight. Then, the time history curve for CLa is almost entirely positive for
the advanced rotation and half-positive and half-negative for the symmetric rotation,
and then it is most of the time negative for the delayed rotation. Recall that CLa

and CLm do not depend on the actual flow but are completely determined by the
geometry and the specified motion of the insect wing. Hence, they are completely
symmetric with respect to the rightward and leftward movements of the insect wing.
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Figure 2. (a) Model 1 for the symmetric rotation with δ = 0. (b) The time histories of the lift
contribution. (�, CL; �, CLm; �, CLa; �, CLv; �, CLs; vertical dash dots, α(t) = 90◦; vertical
dots, the velocity is maximum and α(t) = 45◦ or 135◦).

For the advanced rotation, the minimum ( = −0.07) occurs when t/T = 0.32, while
the maximum CLa( = 0.31) occurs when t/T = 0.53. For the symmetric rotation, the
minimum ( = −0.21) occurs when t/T = 0.4, while the maximum CLa( = 0.21) occurs
when t/T = 0.625. For the delayed rotation, the minimum ( = −0.30) occurs when
t/T = 0.47, while the maximum CLa( = 0.07) occurs when t/T = 0.69. Next, we note
that CL, CLv and CLs for the advanced and symmetric rotations have very similar
trends though differing somewhat in magnitude and temporal occasions. For each
half period of time (from t/T = 0.25 to t/T =0.75), we observe two maxima (one top
and one local) and two minima (one bottom and one local) in the total lift CL as well
as in the volume vorticity and surface vorticity lift components CLv and CLs . Roughly
speaking, the top maximum of CL(CLv) occurs when the insect wing drives with full
speed. The more interesting points are the local maximum and minimum appearing
in the total lift CL and the volume vortex lift CLv in the stage in which the insect wing
manages turning from left to right. At the stage of turning, the translation speed of
the insect wing becomes much lower than the full speed. For advanced rotation, a time
behaviour is that CLv will soon get down to the bottom minimum −0.04 at t/T =0.42,
then rising to the local maximum 0.48 at t/T = 0.58 and then getting sucked down to
the local minimum 0.16 at t/T = 0.66. It is noted that even at the moment in which
CLv attains its negative bottom minimum, the insect wing maintains a positive total
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Figure 3. (a) Model 1 for the advanced rotation with δ = π/4. (b) The time histories of the
lift contribution. (�, CL; �, CLm; �, CLa; �, CLv; �, CLs; vertical dash dots, α(t) = 90◦; vertical
long dashes, α(t) = 45◦ or 135◦; vertical dots, the velocity is maximum).

lift CL because of the positive contributions from CLs( = 0.08) and also CLa( = 0.1).
The delayed rotation exhibits quite different behaviours. An obvious disadvantage
is that CLa is negative most of the time. But the more profound difference is that
there is neither a local maximum nor a local minimum in CLv (and CL). At tuning,
the delayed rotation has relatively small volume vortex lifts in contrast to other two
types of motions, each of which has a significantly positive local maximum in the
volume vortex lift CLv . These behaviours can be examined closely by exploring the
distributions of the volume vortex lift elements at different times.

Figure 5(a–f ) shows the snapshots of vorticity and vortex lift elements at six
different instants during a time period for the advanced rotation. The sequence starts
with the time instant (t/T = 0.25) at which the insect wing is in the middle of leftward
motion. A useful remark is made here before we proceed with the details. In general,
a region of vorticity of the same sign may contribute both positive and negative
elements. Whether we have net positive or net negative force elements depends on the
instant attitude of the insect wing and the actual flow conditions (Chang 1992). The
insect wing drives with full speed in the middle of leftward movement (t/T = 0.25).
The largest CLv is attained at t/T = 0.27 due to the net positive and intensive vortex
lift elements which have been generated from the leading edge as well as from the
trailing edge (figure 5a). Note that the angle made between the wing and the leftward
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Figure 4. (a) Model 1 for the delayed rotation with δ = −π/4. (b) The time histories of the
lift contribution. (�, CL; �, CLm; �, CLa; �, CLv; �, CLs; vertical dash dots, α(t) = 90◦; vertical
long dashs, α(t) = 45◦ or 135◦; vertical dots, the velocity is maximum).

direction is the high 62◦, and thus the term of dynamic stall LEV is often used in this
high volume vortex lift situation. As the insect wing is slowing down and preparing
for turning, both the leading and trailing edges do not continue to generate intense
vorticity. The insect wing experiences the smallest CLv at t/T =0.42 when the wing
makes the angle of 77◦ with the rightward direction (figure 5b). At this moment, the
wing has turned from facing leftward to rightward but is still moving leftward. (The
wing is at its leftmost position at t/T = 0.5). The LEV and trailing vortex are almost
detached from the insect wing, and there are more negative vortex lift elements than
the positive ones round the leading and trailing edges. These two vortices, which have
been generated from the leading and trailing edges in the rear wake, are now turning
to lie below the wing (or the front wake). Dickinson et al. (1999) called this behaviour
‘wake capture’, as the vortices are basically detached but are close enough to interact
with the wing after turning. But the moment in which we observe wake capture
does not necessarily imply a high vortex lift. Indeed, the two detached vortices of
the wake capture, though differing in sign of vorticity, do contribute collaboratively
to significantly positive lift elements. This mechanism that maintains vortex lift for
the insect wing during turning is hereby called ‘riding on lift elements’, as the force
contribution is concerned. However, these positive contributions are largely cancelled
by the negative lift elements closely attached to the insect wing, yielding a slightly
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Figure 5. For legend see next page.

negative volume vortex lift CLv( = −0.04). Nevertheless, it is very important that the
flow pattern maintain wake capture or riding on lift elements for a while. For example,
consider the time instant t/T = 0.5. As the wing is further rotated at turning, new
vorticity is generated from both the leading and trailing edges, contributing to positive
lift elements (figure 5c). The vortex lift rises again. By time t/T = 0.58, the insect wing
moves rightward and makes the angle of 47◦. While the wing is still effectively riding
on lift element in the front wake, intense new vorticity has been generated from the
leading and trailing edges, contributing net positive elements substantially (figure 5d).
As a result, the insect wing at this moment benefits most from maintaining the
mechanism of wake capture or riding on lift elements, gaining the local maximum
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( f ) ( f )

Figure 5. Selected plots of vorticity and lift elements for the advanced rotation with δ = π/4.
Left: vorticity contour (red, anticlockwise; blue, clockwise). Right: lift force element contour
(red, positive lift elements; blue, negative lift elements). (a) t/T = 0.27, α(t) = 118◦, v = −0.99;
(b) t/T = 0.42, α(t) = 77◦, v = −0.48; (c) t/T = 0.50, α(t) = 58◦, v = 0; (d) t/T = 0.58, α(t) = 47◦,
v = 0.48; (e) t/T =0.66, α(t) = 46◦, v = 0.84; (f) t/T = 0.77, α(t) = 62◦, v = 0.99; v is the
translational velocity normalized by Umax .

in the volume vortex lift CLv (figure 5d). Now, when the wing slows its rotation, less
vorticity is generated round the leading and trailing edges. As the wing moves further
rightward, the two ‘ridden-on’ vortices in the front wake merge together to form a
single region of positive lift elements near the trailing edge. At t/T =0.66, the budget
of positive and negative lift elements yields the local minimum (which is positive)
in the vortex lift CLv (figure 5e). Then, as the insect drives again in full speed, the
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Figure 6. (a) Lift elements of the symmetric rotation at t/T = 0.55. (b) Lift elements of the
delayed rotation at t/T = 0.66. (Red: positive lift elements; blue: negative lift elements.)

wing regains its maximum volume vortex lift soon after it is in the middle flight of
rightward motion (figure 5f ).

The most interesting behaviour associated with the advanced rotation is the
mechanism of riding on lift elements of the previously detached vortices. As a
comparison, figure 6(a, b) shows the snapshots of lift elements for the symmetric
and delayed rotations when the wing makes an angle of about 77◦ in the rightward
direction. This mechanism is less visible for the symmetric rotation and does not exist
at all for the delayed rotation. For the symmetric rotation, the positive force elements
are mainly generated from the leading edge and come less from the detached vortex
near the trailing edge. For the delayed rotation, the positive force elements are mainly
generated from both the leading and trailing edges.

If we look into the surface lift elements for advanced rotation, there are two
distinguished distributions associated with the movement of the wing with a fuller
speed or turning its direction of rotation. In either case, the lift elements are larger in
magnitude at the leading edge than at the trailing edge, and in turn, the lift elements
near both edges are much larger than at the rest of the wing surface. As the wing is
moving with a fuller speed (t/T =0.28) in figure 3, the lift elements on the front side
are large and positive at the leading edge, become negative but small in the middle
portion and then turn to be positive and mildly large at the trailing edge. The net
CLs is 0.38. The lift elements on the rear side are large and positive at the leading
edge, become small away from the leading edge and then turn to be mildly negative
at the trailing edge. As the wing is turning its direction of rotation (t/T = 0.4), the
lift elements are largely negative at the leading edge, separate in sign in the middle
portion to become positive on the front side and negative on the rear side, turn to
be positive on both sides further towards the trailing edge and then decrease and
become mildly negative on the front side at the trailing edge. The net CLs is 0.09.

In spite of the lift mechanisms between the advanced and delayed rotations being
different at turning, the difference in C̄Lv( = 0.075) is not large, compared to the
differences in C̄La( = 0.260) and C̄Ls( = 0.127). However, the volume vortex lift C̄Lv is
the dominant factor that yields a high lift, in that if C̄Lv is decreased significantly by
altering the flow parameters, then neither C̄La nor C̄Ls can compensate the loss of C̄Lv .
This can be seen by re-examining the values in table 1. If a higher lift is concerned,
the delayed rotation with more negative δ is rejected by all the key components C̄La ,
C̄Ls and C̄Lv which decrease significantly with decreasing the phase δ from −π/4
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Figure 7. The time histories of the lift contribution for wing rotation about different chord
lengths from the leading edge (�, 1/2 chord; �, 1/3 chord; �, 1/4 chord).

to −3π/8 to −π/2. The advanced rotation with more positive δ will be rejected by
both C̄Lv and C̄Ls which drop tremendously as δ goes up from π/4 to 3π/8 and then to
π/2 despite that C̄La can be increased by increasing δ. Hence, the optimal range for δ is
the range for which C̄Lv is the dominant factor for high lift, while a slight adjustment
of δ can be made to increase C̄La and C̄Ls without reducing C̄Lv substantially.

4.1.2. Influence of the rotational axis

The effect of rotation is also examined by considering three axes of rotation for
the symmetric motion. Their distances from the leading edge of the elliptic wing are
respectively 1/2, 1/3 and 1/4 chord lengths. Figure 7 shows the time histories of the
total lift CL as well as three contributing components CLa , CLv and CLs . The trends
of the total lift and all the lift components are quite similar, but we also observe that
there is a phase delay if we move the axis from 1/2 chord length to 1/3 chord length
or 1/4 length. Other minor differences caused by moving the axis closer to the leading
edge include slight increases in all the force components: C̄La = 0.0, 0.014, 0.021;
C̄Lv =0.364, 0.365, 0.373; and C̄Ls =0.184, 0.185, 0.190. The corresponding averaged
total lifts are respectively 0.550, 0.564 and 0.581. In summary, the overall behaviours
in the total lift and the force components do not differ qualitatively except for minor
changes in magnitude.

4.1.3. Influence of the Reynolds number

In general, an insect exploits unsteady aerodynamic mechanisms over the range
Re = 102–104 (Weis-Fogh 1973). For the hovering flight of a fruit fly, the order of
the Reynolds number is around 100. In this study, Re is ranged between 57 and
129 to investigate the dependence of the averaged total lift as well as the four lift
contributions over a time period. In particular, we should realize the important
contribution of C̄Ls from the surface vorticity in this relatively low Reynolds
number region. The results are listed in table 2. In the entire range of investigation,
C̄Lm is negligible compared to other lift components and C̄La is zero because of
symmetric motion. In this table, we have all the lift force minima at Re = 57:
C̄L = 0.495, C̄Lv = 0.286 and C̄Ls = 0.208. It is noted that the relative importance of
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Re C̄L C̄Lm C̄La C̄Lv C̄Ls C̄Ls + C̄Lv

57 0.495 0.001 0 0.286 0.208 0.494
72 0.570 0.002 0 0.330 0.238 0.568
86 0.592 0.002 0 0.355 0.235 0.590

101 0.579 0.002 0 0.364 0.213 0.577
115 0.547 0.002 0 0.361 0.184 0.545
129 0.516 0.002 0 0.357 0.157 0.514

Table 2. Various time-averaged lift coefficients versus Re for fruit fly hovering with δ = 0.

C̄Ls measured by C̄Ls/(C̄Lv+C̄Ls) at this Reynolds number is high (42.1 %), and so
the corresponding importance of C̄Lv is 57.9 %. But neither the total lift nor any force
component can be increased monotonically by increasing the Reynolds number. The
surface vorticity lift C̄Ls attains its maximum 0.238 at Re = 72; the volume vorticity
lift C̄Lv attains its maximum 0.364 at Re = 101; while the total lift C̄L attains its
maximum 0.592 at the intermediate Re = 86. But there is still a trend with increase in
the Reynolds number. The relative importance of C̄Ls measured by C̄Ls/(C̄Lv + C̄Ls)
decreases monotonically to 30.6 % at Re = 129, and the corresponding importance of
C̄Lv increases to 69.4 %. In summary, the total force C̄L as well as the vorticity force
C̄Lv cannot be increased monotonically with increasing the Reynolds number, though
the contribution of C̄Lv relative the surface vorticity lift C̄Ls is indeed increased.

4.2. Model for dragonfly motion

The motion for dragonfly is performed with A∗
0/c

∗ = 2.5 and f ∗ = 40 Hz. The stroke
plane inclines to the horizontal with an angle β = π/3. The Reynolds number
Re is 157. The motion of the wing elliptic with aspect ratio 8 is given by
A(t) = A0/2 [(cos(2πf t) − 1)]. The rotation is about the middle chord of the wing,
and the angle of attack is α(t) = π/4 − π/4[sin(2πf t + δ)]. The simulated motion is
started from rest, and the lift reaches a stationary state after five strokes. Here we
choose the tenth period for investigation.

4.2.1. Influence of the phase difference between translation and rotation

Figure 8 shows the average total lift C̄L as well as the four lift components
C̄Lm, C̄La , C̄Lv and C̄Ls versus the phase difference δ. The average lift C̄L has the
maximum ( = 0.705) in a range near δ = π/4, decaying from both sides of δ = π/4 to
0.017 at δ = −π/4 and to 0.534 at δ = π/2. This behaviour of C̄L can be analysed by
examining the various contributions of the constituent force components. The lift C̄Lm

is uniformly small for all δ but decreases slightly with increasing the phase difference.
By increasing the phase difference, the lift component C̄La is increased almost steadily
from −0.211 at δ = −π/4 to 0 at δ = 0 and then to 0.304 at δ = π/2. The volume
vorticity lift C̄Lv has the maximum 0.439 at δ =0, decaying from both sides of δ =0
to 0.226 at δ = −π/4 and to 0.153 at δ = π/2. By increasing the phase difference,
the surface vorticity lift C̄Ls increases gradually from −0.019 at δ = −π/4 to 0.132
at δ = 0, attaining the maximum 0.155 at δ = 5π/18 and then decaying gradually to
0.107 at δ = π/2. As the phase difference δ is increased above π/3 the lift C̄La begins to
outweigh C̄Lv and equals in magnitude to the total vortex lift, i.e. the sum of C̄Lv and
C̄Ls at δ = 4π/9. It is of interest to notice that for the symmetric rotation (δ = 0) the
average total lift C̄L is completely credited to the vortex force, that is C̄Lv (76.6 %) +
C̄Ls (22.9 %), as other force components have negligible contributions at this mode of
motion. However, the average total lift C̄L does not have the maximum at δ =0 but
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Figure 8. The average lift coefficients versus phase difference δ (�, CL; 	, CLm; �, CLa; �,
CLv; 
, CLs; �, C̄Ls+C̄Lv).

at the advanced rotation with δ = π/4. In other words, the optimal flight of dragonfly
for a higher lift favours the advanced rotation with δ = π/4 rather than the symmetric
rotation. More precisely in magnitude, the dragonfly switches from the symmetric
rotation to the advanced, gaining C̄La by 0.221 at the expense of sacrificing the vortex
lift C̄Lv+C̄Ls by −0.066. Nevertheless, an advanced rotation with even larger δ is
rejected because the rate of decrease in the vortex lift C̄Lv+C̄Ls exceeds the rate of
increase in C̄La .

Next, we turn to examine the unsteady behaviours. In the following discussion,
we shall consider more details only for three phase differences: δ = 0 (symmetric),
π/5 (advanced) and −π/5 (delayed). Figures 9–11 show the time-varying total lift
coefficient CL as well as the four constituent lift coefficients for the symmetric,
advanced and delayed rotations, respectively, over a full time period. The wing is
in downstroke during the first half of time period and in upstroke during the latter
half of time period. First, we note that CLm is uniformly small all the time for all
the types of motion. Next, we observe that CLa is negative during the middle time
period from t/T = 0.25 to t/T = 0.75 and positive during the rest of the time period.
The CLa for the symmetric rotation has odd symmetry in time, yielding net zero
C̄La . For the advanced rotation, the average of CLa in the positive phase is larger
than that in the negative phase in magnitude; the opposite holds for the delayed
rotation. These differences result in the positive C̄La = 0.185 for the advanced rotation
and negative C̄La = −0.173 for the delayed rotation. Then, we turn to the more
interesting behaviours of CLv . Roughly speaking, the lift CLv is positive most of time
in the downstroke phase and during a later time period of the upstroke phase. More
precisely, the time intervals for positive CLv are (0.024, 0.616) and (0.72, 0.816) for
the symmetric rotation, (0.064, 0.584) for the advanced rotation and (0.96, 1) (0,
0.504) for the delayed rotation. The volume vortex lift CLv oscillates in a smaller
range from 1.51 at t/T = 0.28 to −0.212 at t/T = 0.92 for the symmetric rotation, in
the range from 2.43 at t/T = 0.3 to −1.07 at t/T = 0.868 for the advanced rotation
and in a larger range from 3.58 at t/T = 0.196 to −1.67 at t/T = 0.648 for delayed
rotation. It is important to note that for the symmetric rotation, the lift CLa is in
the upstroke motion when the negative is small in magnitude. As a comparison, the
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Figure 9. (a) Model 2 for the symmetric rotation with δ =0 at Re = 157. (b) The time
histories of the lift contribution (�, CL; 	, CLm; �, CLa; �, CLv; 
, CLs).

insect wing in advanced rotation loses CLv significantly in the latter half of upstroke
motion, and therefore the advanced rotation has a smaller C̄Lv than the symmetric
rotation. Another comparison shows that the delayed rotation has an even smaller
C̄Lv compared to the symmetric rotation, as the wing loses more volume vortex lift in
the stage of upstroke motion. It is also of interest to observe that the sign of CLs is
almost all the time the same as that of the total lift CL. The total lift CL oscillates in
a smaller range from 2.384 at t/T = 0.12 to −0.746 at t/T =0.492 for the symmetric
rotation, in the range from 3.067 at t/T = 0.268 to −1.174 at t/T = 0.832 for the
advanced rotation and in a larger range from 5.193 at t/T = 0.188 to −2.588 at
t/T = 0.642 for the delayed rotation.

The time intervals during which the insect wing gains a positive CL are (0.904, 1)
(0, 0.408) for the symmetric rotation, (0.92, 1) (0, 0.456) for the advanced rotation and
(0.928, 1) (0, 0.328) for the delayed rotation. In summary, CLa and CLs are positive
initially at t/T = 0, while CLv is slightly negative. As time increases, the volume vortex
lift CLv begins to increase its contribution and does so up to the time at which the
wing is in the horizontal position and then decreases as the wing lifts again its angle
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Figure 10. (a) Model 2 for the advanced rotation with δ = π/5. (b) The time histories of the
lift contribution (�, CL; 	, CLm; �, CLa; �, CLv; 
, CLs).

of attitude but remaining positive for the entire downstroke stage. However, the CLa

begins to sink below 0 at t/T = 0.25 and attains its minimum at t/T =0.44 for
the symmetric rotation, at t/T = 0.388 for the advanced rotation and at t/T = 0.488
for the delayed rotation. Hence, the total lift CL sustains a shorter time interval of
positive values than the vortex lift CLv in the downstroke motion. The situation for
the upstroke motion is more complicated. In the first half of upstroke motion, the
lift components CLa and CLs are negative. The lift component CLv is mildly small in
the entire phase of upstroke for the symmetric rotation, substantially negative in the
latter half of downstroke for the advanced rotation and substantially negative in the
former half of downstroke for the delayed rotation. The total lift coefficient CL for all
types of motion rises above zero earlier than CLv does in a later stage of downstroke.

Figure 12(a–e) shows the various snapshots of vorticity and vortex lift elements at
five different instants during a time period for the symmetric rotation. The sequence
starts with the time instant at which the insect wing is in the beginning of downstroke.
At t/T = 0, there are already two detached vortices of different signs in the flow, one
in front of the wing and the other near the trailing edge. The detached vortex near



Revisiting hovering flight 139

x∗

y∗

0

A0

t/T

L
if

t c
oe

ff
ic

ie
nt

s

0 0.2 0.4 0.6 0.8 1.0

–2

0

2

4

6

(a)

(b)
(Downstroke) (Upstroke)

Figure 11. (a) Model 2 for the delayed rotation with δ = −π/5. (b) The time histories of the
lift contribution (�, CL; 	, CLm; �, CLa; �, CLv; 
, CLs).

the trailing edge contributes positive lift elements, while the front vortex contributes
negative lift elements more than the positive ones. There are also two slender regions of
vorticity of different signs closely attached to the body; their contributions to positive
and negative lift elements tend to cancel each other (CLv = −0.06). As time increases,
the insect wing moves downward along β = π/3 while rotating counterclockwise
simultaneously. Intense vorticity is generated from the leading and trailing edges.
Also, there are slender vortices on the back of the body. The detached front vortex is
now merged with the trailing edge vortex, while the detached trailing vortex is pushed
further away from the body and weakens in strength because of diffusion. The newly
generated vortices are more effective in contributing to intensive positive lift elements.
By time t/T = 0.16, we have CLv = 0.95. This trend or behaviour continues as time
further increases. The leading and trailing vortices are further intensified, and by
t/T = 0.28 we have the maximum CLv = 1.51. Then still in downstroke, the wing
begins to rotate clockwise, and both the leading and trailing edges are no longer
supplied with further vorticity, weakening in strength and being ready to detach from
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Figure 12. For legend see facing page.

the insect wing. The vortex lift CLv therefore decreases, and by t/T =0.48 we have
CLv =0.47. In table 3, total average lift and its four components for the downstroke
and upstroke phases are listed.

Unlike the previous model for fruit fly, the current model also exhibits a drag
(thrust) component. As an illustration, figure 13 shows the time histories of the
total drag CD and its four constituent components CDm, CDa , CDv and CDs for the
symmetric rotation. It is seen that the insect gains thrust in the half period form
t/T = 0.39 to t/T = 0.92 (mostly in the phase of upstroke) and experiences drag
in the rest of the motion. The net budget is the thrust −C̄D =0.304. Among the
four drag components, CDm is relatively small but oscillates with a larger amplitude
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Figure 12. Selected plots of vorticity and lift elements for the symmetric motion with
δ = 0. Left: vorticity contour (red, anticlockwise; blue, clockwise). Right: lift force element
contour (red, positive lift elements; blue, negative lift elements). (a) t/T =0, α(t) = 45◦, v = 0;
(b) t/T = 0.16, α(t) = 7.0◦, v = −0.84; (c) t/T = 0.28, α(t) = 0.8◦, v = −0.98; (d ) t/T = 0.48,
α(t) = 39.4◦, v = −0.12; (e) t/T = 0.76, α(t) = 89.9◦, v = 0.998.

δ α(0) Phase C̄L C̄Lm C̄La C̄Lv C̄Ls

π/5 18.5◦ Downstroke 0.889 −0.001 0.067 0.539 0.284
Upstroke −0.198 −0.016 0.118 −0.167 −0.133

0 45◦ Downstroke 0.677 0.002 0.005 0.440 0.230
Upstroke −0.103 0.001 −0.005 0.0004 −0.099

−π/5 71.5◦ Downstroke 0.678 0.003 −0.056 0.531 0.200
Upstroke −0.562 0.014 −0.117 −0.282 −0.177

Table 3. Various time-averaged lift coefficients versus δ for each half stroke at Re = 157.

in the phase of upstroke, and the net −C̄Dm = 0.004. The component CDa provides
thrust in the middle rang from t/T = 0.25 to t/T = 0.75 and drag in the rest of the
time, and the net contribution is zero. The component CDs provides more thrust at
t/T = 0.39 and t/T =0.95 and then drag in the rest of time, and the net budget
is −C̄Ds =0.142. From t/T = 0.65 to t/T =0.036, the insect wing experiences drag
from the component CDv . The most significant C̄Dv for thrust occurs when the insect
wing turns from lifting its angle of attitude to lowering the angle in the phase of
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δ α(0) Phase C̄D C̄Dm C̄Da C̄Dv C̄Ds

π/5 18.5◦ Downstroke 0.184 0.005 −0.103 0.212 0.070
Upstroke −0.483 −0.020 −0.001 −0.285 −0.177

0 45◦ Downstroke 0.136 0.000 0.002 0.078 0.056
Upstroke −0.440 −0.004 −0.002 −0.236 −0.198

−π/5 71.5◦ Downstroke 0.478 −0.005 0.108 0.204 0.171
Upstroke −0.712 0.012 −0.010 −0.530 −0.184

Table 4. Various time-averaged drag coefficients versus δ for each half stroke at Re = 157.
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Figure 13. The time histories of the drag contribution for the symmetric rotation with δ = 0
(�, CD; 	, CDm; �, CDa; �, CDv; 
, CDs).

upstroke. The net budget is −C̄Dv = 0.158. In table 4, total average drag and its four
components for the downstroke and upstroke phase.

If we look into the surface lift elements for symmetric rotation, there are two
distinguished distributions associated with the horizontal and vertical positions of
the wing. It either case, the lift elements are much larger in magnitude at the leading
edge than at the rest of the wing surface. As the wing is in the horizontal position
(t/T =0.25) in figure 9, the lift elements are negligibly small in the middle parts of both
the lower and upper sides and are largely positive around the leading edge. Near the
trailing edge the lift elements are mildly positive on the lower side and mildly negative
but smaller in magnitude on the upper side. The net CLs is 0.61. When the wing is in
the vertical position (t/T = 0.75), the lift elements on the front side are largely negative
at the leading edge and become small but still negative further toward s and till the
trailing edge. On the rear side, the lift elements are largely positive at the leading edge
and become mildly negative towards and till the trailing edge. The net CLs is −0.33.

4.2.2. Influence of the Reynolds number

For the hovering flight of a fruit fly, the order of Re is between 102 and 103.
It was shown that the averaged force is independent of Re when 150 < Re < 1256
(Wang 2000a). In the present study, the Reynolds number is varied from 75 to 628
for the symmetric motion to investigate the total lift as well as the four contributing
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Re C̄L C̄Lm C̄La C̄Lv C̄Ls C̄Ls + C̄Lv

75 0.445 0.000 0 0.301 0.144 0.445
157 0.572 0.001 0 0.440 0.131 0.571
225 0.584 0.001 0 0.471 0.112 0.583
314 0.605 0.001 0 0.500 0.104 0.604
450 0.606 0.002 0 0.513 0.091 0.604
628 0.601 0.002 0 0.522 0.077 0.599

Table 5. Various time-averaged lift coefficients versus Re for dragonfly hovering with δ = 0.

components. The results are listed in table 5. The averaged total lift C̄L increases
by 28.54 % with increasing Re from 75 to 157, then increases mildly by 5.8 % with
increasing Re from 157 to 314 and has approximately the same value with further
increasing Re from 314 to 628. Again, we see negligible contribution from C̄Lm in the
range of investigation and identically zero C̄La because of the symmetric motion. Of
more interest is the significant increase of the averaged volume vorticity lift C̄Lv and
decrease of the averaged surface vorticity lift C̄Lv . It is seen that C̄Lv increases very
significantly by 46.18 % with increasing Re from 75 to 157 and also substantially by
18.64 % with increasing Re from 157 to 628. On the other hand, C̄Ls decreases by
9.03 % with increasing Re from 75 to 157 and by 41.2 % with increasing Re from
157 to 628. As a result, the relative importance of C̄Lv measured by C̄Lv/(C̄Lv + C̄Ls)
increases from 67.6 % to 87.1 %, and correspondingly that of C̄Ls measured by
C̄Ls/(C̄Lv + C̄Ls) decreases from 32.4 % to 12.9 %. The opposite trends of C̄Lv and C̄Ls

present their much more significant dependence on the Reynolds number compared to
the total lift C̄Lv . It is also worthwhile to remark that for the symmetric motion even
with different Reynolds numbers, the averaged total lift is almost entirely credited to
the vorticity lift (volume plus and surface vorticity lift).

4.2.3. Influence of the wing shape

The wing shapes we chose and shown in figure 14 can be categorized into two
types. One type is the symmetric shape like 1/8, 1/10 and 1/12 thick ellipses as well
as NACA0012 airfoil. The other type is N-10, S1223 and CLARK-V which can be
sub-divided to those with a blunt nose and more or less cambered. The performance
of the seven wing shapes is illustrated for the symmetric hovering motion of dragonfly
at Re = 157. Table 6 shows the total as well as the contributing time-averaged lift
coefficients. First, the results for the ellipses of different thickness are compared. The
averaged C̄Lm is small and can be neglected, and C̄La is zero for symmetric motion.
On the other hand, both vorticity lift contributions C̄Lv and C̄Ls can be increased
slightly by decreasing the thickness of elliptic wing. If we consider the wings of 1/8
and 1/12 thickness, there is only 1.59 % gain in C̄Lv , and, however, the increase in
C̄Ls runs up to 6.87 %. Because of the relatively small importance of C̄Ls compared to
C̄Lv , the total averaged lift C̄L only increases by 2.8 % with decreasing the thickness
of wing from 1/8 to 1/12. The NACA0012 airfoil has the advantage of improving
the volume vorticity lift C̄Lv at a smaller expense of loosing C̄Ls . The increase in C̄Lv

is 0.045, and the decrease in C̄Ls is −0.024 compared to the 1/12 thickness wing.
Meanwhile, we also see an increased contribution from C̄Lm by 0.003. The resultant
gain in the averaged total lift C̄L is 4.08 %.

The more interesting comparisons are between the symmetric and non-symmetric
or cambered airfoils. The non-symmetric wings have larger C̄L and C̄Lv but smaller
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Shape C̄L C̄Lm C̄La C̄Lv C̄Ls C̄Ls + C̄Lv

Elliptic 1/8 0.572 0.001 0 0.440 0.131 0.571
Elliptic 1/10 0.579 0.001 0 0.443 0.135 0.578
Elliptic 1/12 0.588 0.001 0 0.447 0.140 0.587
NACA 0012 0.612 0.004 0 0.492 0.116 0.608
CLARK-V 0.628 0.003 0.007 0.505 0.113 0.618
N-10 0.658 0.010 0.007 0.525 0.116 0.641
S1223 0.673 0.006 0.008 0.564 0.095 0.659

Table 6. Various time-averaged lift coefficients versus wing shape for dragonfly hovering
with δ =0 at Re = 157.
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Figure 14. The various wing profiles: (a) NACA0012 (upper–lower symmetric), (b) N-10
(slightly cambered), (c) CLARK-V (slightly cambered), (d) S1223 (largely cambered) (UIUC
Airfoils Coordinates Database).

C̄Ls compared to the symmetric wings. For example, if we replace the 1/12 thickness
ellipse with the N-10 wing, the gain in CLv is 0.078, while the loss in C̄Ls is −0.024.
Meanwhile, we also see the contribution from C̄Lm increased by 0.009. As a result, the
gain in the total averaged lift C̄L is 11.9 %. The performance of CLARK-V wing lies
between those of NACA0012 airfoil and N-10 airfoil. As far as a favourable lift is
concerned, the S1223 wing shape is most advantageous. Again, we compare it to the
1/12 thickness ellipse. The lift C̄Lv is increased very significantly by 0.117, while C̄Ls

is decreased by 0.045. The relative importance of C̄Lv measured by C̄Lv/(C̄Lv + C̄Ls)
increases from 76.1 % to 85.6 %, and correspondingly that of C̄Ls measured by
C̄Ls/(C̄Lv + C̄Ls) decreases from 23.9 % to 14.4 %. The resultant gain in the averaged
total lift C̄L is 14.5 %.

In order to examine the effects of unsteadiness, we also show time histories of
CLv and CLs in a period of time of symmetric motion for all types of airfoils in
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Figure 15. (a) The time histories of CLv . (b) The time histories of CLs (�, 1/10 thick ellipse;
�, 1/12 thick ellipse; �, NACA0012; �, N-10; �, CLARK-V; �, S1223).

figure 15. It is first noted that the 1/10 and 1/12 thick ellipses have almost identical
trends in both CLs and CLv for the entire period of motion, while the S1223 airfoil
exhibits the largest deviations. The S1223 airfoil has uniformly higher CLv in the
entire downstroke phase and relatively lower CLv in the middle of upstroke phase.
The NACA0012 airfoil exhibits the major difference in CLv from those of the ellipses
in a middle range of downstroke phase. The behaviours of CLv for the other two types
of airfoils – N-10 and CLARK-V – lie in between those of S1223 and NACA0012.
In other words, the other types of airfoils compared to the ellipses gain extra volume
vorticity lift CLv mainly from the downstroke motion. On the contrary, the other types
of airfoils compared to the ellipses lose the surface vorticity lift CLs substantially in
the first half of downstroke motion but have a little bit higher CLs at the turning
from downstroke to upstroke.

5. Concluding remarks
It has been of great interest to understand how insect flight benefits from unsteady

aerodynamics. In this study, we have taken the viewpoint of force decomposition to
examine the lift by its four contributions from unsteadiness. In particular, we have
considered the simplified hovering models of Dickinson et al. (1999) and Wang (2000)
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for the fruit fly and dragonfly. The force components of the total lift CL for the
present applications include the volume vorticity lift CLv and the surface vorticity lift
CLs and two credited to the surface motion – CLm associated with the wing velocity
and CLa associated with the wing acceleration. The two latter components CLm and
CLa are determined once the geometry and the hovering motion are prescribed, while
the former two CLv and CLs can be determined only when the flow field is solved or
measured.

It was observed that CLm is uniformly small in time for all the types of motions
and can be neglected in the discussion. For flights at the low Reynolds numbers
Re = 115 (fruit fly) and Re = 157 (dragonfly), the surface vorticity contribution CLs

is important. The interplay between the three major force components CLa , CLv and
CLs constitutes a plethora of interesting lift behaviours at various phases of motion.
A mild change in C̄L is often accompanied with more drastic changes in C̄Lv and C̄Ls .
The component C̄La is increased by increasing the phase difference δ in the models of
hovering, and on the contrary, C̄Lv is maximal at δ = 0 (symmetric rotation), and C̄Ls

has the maximum in an advanced rotation with an intermediate δ. For both models of
hovering, as the net lift is concerned, the symmetric rotation is nearly fully supported
by the vortex force (C̄Lv plus C̄Ls). Moreover, among all the modes of hovering the
net vortex lift (averaged over a time period) is maximal when the wing performs the
symmetric rotation, but the optimal average lift is attained for an advanced rotation,
which, compared to the symmetric rotation, increases the force contribution due to the
unsteady surface motion at the expense of sacrificing contribution from the vorticity.

There are other interesting features concerning the contributions from the volume
vorticity via lift elements. First, we summarize the results for fruit fly. The most
efficient phase in generating positive lift elements is the time interval during which the
wing drives with full speed. The CLv attained its maximum shortly after this moment.
When turning from facing one direction to the opposite, the insect wing was shown
to exhibit a mechanism – which we called ‘riding on lift elements’ – for the advanced
rotation. This ‘riding-on’ effect corresponds to the phenomenon of ‘wake capture’
called by Dickinson et al. (1999). This is very important for the advanced rotation to
remain in the phase of positive CLv in a time interval after turning. This mechanism
is less visible for the symmetric rotation and does not appear in the delayed rotation.
If we shift the axis of rotation, the time histories of the total lift and various lift
components remain very similar except for minor differences in phase and magnitude.
But if we vary the Reynolds number Re between 57 and 129, the insect wing attains
the maximum averaged total lift at the intermediate Re =86, though the relative
importance of C̄Lv to C̄Ls increases with increasing the Reynolds number.

Next, we summarize the results for dragonfly. The lift component CLv is positive
in almost the entire phase of downstroke, attaining its maximum at a moment close
to the turn from lowering to lifting the wing’s angle of attack. In the phase of
downstroke, the symmetric rotation maintains small magnitude, while the advanced
rotation loses the vortex lift significantly in the latter stage of downstroke, and the
delayed rotation loses the vortex lift most of the time in the phase of downstroke. The
lift component CLa becomes negative in the middle period, and thus the total lift CL

sustains its positive sign in a shorter time interval than CLv . If we vary the Reynolds
number between 75 and 628, C̄Lv will be increased substantially by increasing Re from
75 to 314 and slightly as Re is increased above 314. In other words, in the range of Re
between 314 and 628, the total lift CL is little dependent on Re because the increase in
C̄Lv is almost entirely balanced by the decrease in C̄Ls as Re is increased. The effects
of the wing profile have also been investigated. Seven types of wings were considered:
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1/8, 1/10 and 1/12 thick ellipses, NACA0012 (symmetric wings), N-10, CLARK-V
and S1223 (cambered wings). The performance of these wings improves with respect
to the averaged total lift C̄L by gaining more volume vorticity lift according to the
order listed above. The time histories of the force components show that the cambered
wings compared to the ellipses gain substantially CLv in the upstroke phase while
losing less significantly CLs in the first half of upstroke.

Although the method of force decomposition analysed only two-dimensional
flow in the present study, the formulation is general enough for applications to
three-dimensional flow and flow about bodies in other types of motion. Unsteady
aerodynamics for two wings (e.g. clap and fling) or more bodies (e.g. wing–body
configuration) from the perspective of the diagnostic force theory are also worthy of
investigation.
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Dickinson, M. H. & Götz, K. G. 1993 Unsteady aerodynamic performance of model wings at low
Reynolds numbers. J. Exp. Biol. 174, 45–64.

Dickinson, M. H., Lehmann, F. O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of
insect flight. Science 284, 1954–1960.

Ellington, C. P. 1984 The aerodynamics of hovering insect flight. Phil. Trans. R. Soc. Lond. B 305,
1–181.

Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge
vortices in insect flight. Nature 384, 626–630.

Howarth, L. 1935 The theoretical determination of the lift coefficient for a thin elliptic cylinder.
Proc. R. Soc. London. A 149, 558–586.

Howe, M. S. 1989 On unsteady surface forces, and sound produced by the normal chopping of a
rectilinear vortex. J. Fluid Mech. 206, 131–153.



148 C. T. Hsieh, C. C. Chang and C. C. Chu

Howe, M. S. 1995 On the force and moment on a body in an incompressible fluid, with application
to rigid bodies and bubbles at high and low Reynolds numbers. Quart. J. Mech. Appl. Math.
48, 401–426.

Howe, M. S., Lauchle, G. C. & Wang, J. 2001 Aerodynamic lift and drag fluctuations of a sphere.
J. Fluid Mech. 436, 41–57.

Isogai, K., Fujishiro, Saitoh, T., Yamamoto, M., Yamasaki, M. & Matsubara, M. 2004 Unsteady
three-dimensional viscous flow simulation of a dragonfly hovering. AIAA J. 42, 2053–2059.

Kambe, T. 1986 Acoustics emissions by vortex motions. J. Fluid Mech. 173, 643–666.

Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics (2nd ed.) Pergamon.

Lehmann, F. O. 2008 When wings touch wakes: understanding locomotor force control by wake–
wing interference in insect wings. J. Exp. Biol. 211, 224–233.

Lighthill, M. J. 1973 On Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60, 1–17.

Lighthill, M. J. 1979 Wave and hydrodynamic loading. Proc. Second Intl Conf. Behaviour Off-Shore
Struct., BHRA Cranfield, 1, 1–40.

Lighthill, M. J. 1986 Fundamentals concerning wave loading on offshore structures. J. Fluid Mech.
173, 667–681.

Maxworthy, T. 1979 Experiments on the Weis-Fogh mechanism of lift generation by insects in
hovering flight. Part 1. Dynamics of the fling. J. Fluid Mech. 93, 47–63.

Ragazzo, C. G. & Tabak, E. G. 2007 On the force and torque on systems of rigid bodies: a remark
on an integral formula due to Howe. Phys. Fluids, 19, 057108.

Ramamurti, R. & Sandberg, W. C. 2002 A three-dimensional computational study of the
aerodynamic mechanisms of insect flight. J. Exp. Biol. 205, 1507–1518.

Rayner, J. M. V. 1979 A vortex theory of animal flight. Part 1. The vortex wake of a hovering
animal. J. Fluid Mech. 91, 697–730.

Sane, S. P. 2003 The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208.

Sane, S. P. & Dickinson, M. H. 2001 The control of flight force by a flapping wing: lift and drag
production. J. Exp. Biol. 204, 2607–2626.

Sane, S. P. & Dickinson, M. H. 2002 The aerodynamic effects of wing rotation and a revised
quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087–1096.

Smith, M., Wilkin, P. & Williams, M. 1996 The advantages of an unsteady panel method in
modeling the aerodynamic forces on rigid flapping wings. J. Exp. Biol. 199, 1073–1083.

Srygley, R. B. & Thomas, A. L. R. 2002 Unconventional lift-generating mechanisms in free-flying
butterflies. Nature 420, 660–664.

Sun, M. & Tang, J. 2002 Unsteady aerodynamic force generation by a model fruit fly wing in
flapping motion. J. Exp. Biol. 205, 55–70.

Thomas, P. D. & Lombard, C. K. 1979 Geometric conservation law and its application to flow
computations on moving grids. AIAA J. 17, 1030–1037.

Wang, Z. J. 2000a Two dimensional mechanism for insect hovering. Phys. Rev. Lett. 85, 2216–2219.

Wang, Z. J. 2000b Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410,
323–341.

Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid. Mech. 37, 183–210.

Wang, Z. J., Birch, J. M. & Dickinson, M. H. 2004 Unsteady forces and flows in low Reynolds
number hovering flight: two-dimensional computations vs robotic wing experiments. J. Expl
Biol. 207, 461–474.

Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms
for lift production. J. Exp. Biol. 59, 169–230.

Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432–441.


